

HTML5 FOR DIGITAL ADVERTISING
GUIDANCE FOR AD DESIGNERS & CREATIVE
TECHNOLOGISTS

VERSION 1 DRAFT
PUBLIC	
 COMMENT	

Comment	
 Period:	
 	
 May	
 6	
 to	
 June	
 10,	
 2013	
 @	
 5pm	
 ET	

Draft	
 Release	
 Date:	
 May	
 6,	
 2013	

	

IMPORTANT	
 DRAFT	
 RELEASE	
 NOTES:	
 	

This	
 is	
 a	
 draft	
 for	
 public	
 comment.	
 The	
 public	
 comment	
 period	
 will	
 close	
 on	
 June	
 10th	
 at	
 5pm	
 Eastern	

Time.	
 Please	
 submit	
 any	
 feedback	
 to	
 Jessica.Anderson@iab.net	
 prior	
 to	
 the	
 deadline.	
 	

You	
 should	
 take	
 no	
 reliance	
 or	
 action	
 on	
 this	
 draft.	
 Please	
 wait	
 for	
 the	
 final	
 version	
 to	
 be	
 published.

	

	
 	

© 2013 Interactive Advertising Bureau 2 HTML5 for Digital Advertising_v1.0

This	
 document	
 has	
 been	
 developed	
 by	
 the	
 IAB	
 Ad	
 Operations	
 Council	
 and	
 the	
 Mobile	
 Marketing	

Center	
 of	
 Excellence	

The	
 HTML5	
 for	
 Digital	
 Advertising	
 (HTML5_DAv1.0)	
 document	
 was	
 created	
 by	
 a	
 working	
 group	
 of	

volunteers	
 from	
 19	
 IAB	
 member	
 companies.	

The	
 HTML5	
 Digital	
 Advertising	
 Working	
 Group	
 was	
 led	
 by:	

• Cory	
 Hudson,	
 AOL	
 &	
 ADTECH	

• Keith	
 Walter,	
 JumpTap	

The	
 following	
 IAB	
 member	
 companies	
 contributed	
 to	
 this	
 document:	

AOL	
 &	
 ADTECH	

CBS	
 Interactive	

CMG	
 Digital	
 (Cox)	

Crisp	
 Media	

FreeWheel	

Google	
 &	
 YouTube	

InMobi	

JumpTap	

Medialets	

Pandora	
 Media	
 Inc.	

Pictela	

PointRoll	

Spongecell	

SpotXchange	

The	
 Weather	
 Channel	

Time	
 Inc.	

Tribune	

Turner	
 Broadcasting	
 System,	
 	

Inc./CNN.com

	

The	
 IAB	
 leads	
 on	
 this	
 initiative	
 were	
 Jessica	
 Anderson	
 and	
 Sabrina	
 Alimi	

Contact	
 Jessica.Anderson@iab.net	
 to	
 comment	
 on	
 this	
 document.	

ABOUT	
 THE	
 IAB’S	
 AD	
 OPERATIONS	
 COUNCIL	
 AND	
 MOBILE	
 MARKETING	
 CENTER	
 OF	
 EXCELLENCE	

The	
 Ad	
 Operations	
 Council	
 is	
 dedicated	
 to	
 improving	
 the	
 operational	
 efficiency	
 of	
 interactive	

advertising.	
 Ad	
 Operations	
 Council	
 working	
 groups	
 regularly	
 include	
 agency-­‐side	
 representatives	
 to	
 help	

improve	
 communication,	
 understanding,	
 and	
 work	
 process	
 in	
 many	
 areas	
 of	
 the	
 buyer-­‐seller	

relationship.	
 A	
 full	
 list	
 of	
 Council	
 member	
 companies	
 can	
 be	
 found	
 at:	

http://www.iab.net/ad_ops_council	

The	
 IAB	
 Mobile	
 Marketing	
 Center	
 of	
 Excellence,	
 an	
 independently	
 funded	
 and	
 staffed	
 unit	
 inside	
 the	

IAB,	
 is	
 charged	
 with	
 driving	
 the	
 growth	
 of	
 the	
 mobile	
 marketing,	
 advertising	
 and	
 media	
 marketplace.	
 The	

Mobile	
 Center	
 devotes	
 resources	
 to	
 market	
 and	
 consumer	
 research,	
 mobile	
 advertising	
 case	
 studies,	

executive	
 training	
 and	
 education,	
 supply	
 chain	
 standardization,	
 creative	
 showcases	
 and	
 best	
 practice	

identification	
 in	
 the	
 burgeoning	
 field	
 of	
 mobile	
 media	
 and	
 marketing.	
 The	
 agenda	
 focuses	
 on	
 building	

profitable	
 revenue	
 growth	
 for	
 companies	
 engaged	
 in	
 mobile	
 marketing,	
 communications	
 and	

advertising,	
 and	
 helping	
 publishers,	
 marketers	
 and	
 agency	
 professionals	
 understand	
 and	
 leverage	

interactive	
 tools	
 and	
 technologies	
 in	
 order	
 to	
 reach	
 and	
 influence	
 the	
 consumer.	
 More	
 information	
 can	

be	
 found	
 at:	
 http://www.iab.net/mobile	

	

This	
 document	
 is	
 on	
 the	
 IAB	
 website	
 at:	
 http://www.iab.net/HTML5_Digital	
 Advertising	
 	

	

	

© 2013 Interactive Advertising Bureau 3 HTML5 for Digital Advertising_v1.0_draft

Table	
 of	
 Contents	

Executive Summary ... 5	

Intended Audience ... 5	

1	
 General Overview .. 6	

1.1	
 Scope .. 6	

1.2	
 HTML5 and the IAB Display Advertising Guidelines .. 7	

1.3	
 HTML5 Ad Distinction .. 7	

1.3.1	
 Visual Distinction ... 7	

1.3.2	
 Technical Distinction .. 7	

2	
 HTML5 Display Ads ... 8	

2.1	
 HTML5 Display Ad Essentials ... 8	

2.2	
 File Size .. 8	

2.3	
 Optimization of Ad Creative Packaging ... 9	

2.3.1	
 Code and Asset Compression .. 9	

2.3.2	
 Minimize File Count .. 10	

2.3.3	
 Central Processing Unit (CPU) Resources ... 10	

2.4	
 Ad Server Compatibility ... 10	

2.4.1	
 Click Tag .. 11	

2.4.2	
 Ad Unit Size (Dimensions) ... 11	

2.4.3	
 Ad Serving Methodologies .. 12	

2.5	
 Backup Image Experience ... 13	

2.5.1	
 Zip File Contents ... 14	

3	
 In-Banner Video .. 14	

3.1	
 HTML Video Tag ... 14	

3.1.1	
 Browser Support ... 15	

3.2	
 Video Events ... 16	

3.3	
 Forced Video .. 16	

3.4	
 Delivery and File Size .. 17	

4	
 Animation ... 17	

4.1	
 Animation Performance ... 17	

4.1.1	
 CSS Animations Vs. jQuery/Javascript Animations  ... 18	

4.1.2	
 Animation Frame Rate (FPS – Frames per Second) ... 19	

4.1.3	
 Executing Animation .. 21	

4.1.4	
 Feature Detection .. 22	

© 2013 Interactive Advertising Bureau 4 HTML5 for Digital Advertising_v1.0_draft

5	
 HTML5 Tools .. 22	

5.1	
 For Designers .. 22	

5.2	
 For Developers .. 23	

6	
 Terminology ... 25	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

© 2013 Interactive Advertising Bureau 5 HTML5 for Digital Advertising_v1.0_draft

Executive Summary
HTML5 for Digital Advertising 1.0 offers guidance on optimizing HTML5 ad code for better performance across
platforms. This document establishes common ground for optimized HTML5 ads, helping reduce operational
overhead that results as companies make the shift from graphical development tools like Flash™ to HTML5, a
nascent standard that requires more manual processing.

The demand for HTML5-formatted ads has increased as the promise for seamless operation across desktop
computers and mobile devices is propagated in the marketplace. While HTML5 offers a rich rendering
experience across devices, the scarcity of design tools requires additional expertise.

The operational costs of shifting from visual design to code-based design are magnified when publishers and ad
developers lack a common framework for HTML5 ad optimization. This document arms ad designers, creative
technologists and ad operation professionals with a common operational framework for creating and delivering
seamless ad experiences.

Ultimately, wide adoption of HTML5 as an ad development standard may improve and reduce operational
costs, but the digital advertising industry will struggle with HTML5 until much needed guidelines are put in place
to help companies package and serve these ads as efficiently as possible.

As a framework for HTML5 ad optimization, this document addresses some of the common hurdles that have
stifled HTML5 ad implementation. Until guidance for more complex issues in HTML5 adoption is available,
adhering to the practices outlined in this document will help companies begin to build HTML5 ad development
workflows that are more scalable and consistent, improving ad performance and user experience across all
platforms.

Intended Audience
HTML5 ad developers who need a common framework for optimizing their ads for the best consumer
experience and ad load performance will benefit most from this document. However, creative designers,
publishers and those involved at any point in the ad technology supply chain will benefit from being familiar
with the HTML5 ad optimization techniques offered in this document.

© 2013 Interactive Advertising Bureau 6 HTML5 for Digital Advertising_v1.0_draft

1 General Overview
Released as an official recommendation by the World Wide Web Consortium (W3C) in December 2012,
HTML5 is the latest update to the Hypertext Markup Language (HTML) that includes new semantic tags for
features such as video, audio, canvas, and other design features. HTML5 has grown into an industry buzzword
that has come to encompass all the various web technologies and APIs that work together to execute animation
and other interactions. While HTML5 buzz holds much promise, the current state of HTML5 for ad creation is
still in a stage of exploration and refinement. The transition from visual creative development tools to creative
coding skill sets, functionality, and additional technology required, HTML5 ad creative practitioners are
discovering the methods and practices that work best for their organizations’ operational workflows and looking
at effective ways to deliver across devices and systems.

The digital advertising ecosystem has a long way to go before this complex set of tools is absorbed into
everyday ad technology. Yet, despite the code and additional technology involved, HTML5 provides some of
the following benefits:

• Based on a well-established format that many authoring tools and developers can produce
• Provides a rapid testing infrastructure that all browsers should be able to process without using

rendering libraries or wrappers
• Preserves HTML standard methods of laying out content such as positioning, layering, and opacity

Complex issues will arise and the need for formal guidelines and practices around this technology will present
itself as more companies move toward adoption. As an initial step to aiding the digital advertising industry in its
transition to HTML5, guidance for the most common display ad types is needed to establish common practices
necessary for optimizing, packaging and serving an HTML5 display ad, from which richer creative executions
can later be developed.

1.1 Scope	

This document provides general guidance on HTML5 ad creation for display advertising, driving awareness to
ad delivery methods, size and packaging recommendations, and considerations for fallback methods. It also
provides guidance on applying video and animation features within an ad and is followed by a tools section
addressing designer and developer audiences.

More complex ad formats, especially those that include expansion features are out of scope for this document
and will be addressed in future guidance. The HTML5 Resource Wiki is a supplemental resource provided to
inform developers on tools, features and functionality that will evolve over time, and is open to the industry to
submit content. Access the HTML5 Resource Wiki.

Although it is too early to declare a guideline or specification for HTML5 ads, this initial document from the IAB
HTML5 Working Group helps to reduce fragmented workflows, encourages clean ad code and packaging,
and ultimately fosters positive delivery performance across web pages and devices.

© 2013 Interactive Advertising Bureau 7 HTML5 for Digital Advertising_v1.0_draft

1.2 HTML5 and the IAB Display Advertising Guidelines
As a new format for developing interactive display ads, HTML5 was not ready to be considered for the
February 2012 release of the IAB Display Advertising Guidelines. Certain features in HTML5, such as the ability
to use a responsive ad size instead of specifying a width and height, complicate defining ad formats that fit into
the Display Guidelines.

This document defines only one ad format: the HTML5 display ad. At this time, the HTML5 display ad is simply a
broad definition for any ad that does not expand outside of its borders. This basic ad type can be constructed
with rich animations and video so long as all features are contained within the boundaries of the ad.

To comply with the IAB Display Advertising Guidelines: The 2012 Portfolio, HTML5 display ads should conform
as much as possible to the specific ad formats defined. An update to the 2012 Portfolio is anticipated to include
considerations for HTML5 ads, but until these updates are made, use good judgment in the development of
these ads that the industry can readily accept, based on the general guidance presented within this document.

1.3 HTML5 Ad Distinction
An HTML5 ad is effectively an HTML document or a web page that follows the W3C/WHATWG standards,
meaning that web browsers must be able to render the ad like a web page. Preceding all content should be the
HTML tag <!DOCTYPE html>. The document should also contain at least <html> and <body> tags.

1.3.1 Visual Distinction
Since the webpage content and HTML5 ad share the same rendering technology (the browser) and resources,
the ad unit will need to be clearly distinguishable from the normal webpage content as per the IAB Display
Advertising Guidelines. To protect the aesthetics of the ad and brand message, the border should be applied in
the ad creative rather than impose upon the ad server to produce a border.

1.3.2 Technical Distinction
An HTML5 ad is its own independent document that is effectively operating from a different origin than the
publisher’s web page, and depending on the method in which it is delivered, can impact the publisher content
or the effectiveness of its own functionality. To enable an independent ad space within the publisher’s page and
avoid naming collisions between page and creative elements, ad servers and publishers implement a container
for the ad the using an iframe.

Iframes help to ensure security for publishers, but they also limit the use of advanced ad features such as
expansion along with lack of metadata sharing and other interactive communication. The IAB released
SafeFrame 1.0 in early 2012, which offers a more interactive iframe solution using a cross-domain iframe and
an API. See section 2.4.3 for more information about SafeFrame.

In mobile applications, HTML5 ads are segregated from content by using a WebView that contains only the
HTML5 ad document. As with iframes, ads served into a WebView lack the ability to interact with the
application. The IAB Mobile Rich Media Ad Interface Definition (MRAID) solution enables communication
between the ad unit and mobile applications. Please see section 2.4.3 for more information about MRAID.

© 2013 Interactive Advertising Bureau 8 HTML5 for Digital Advertising_v1.0_draft

2 HTML5 Display Ads
Ads created in HTML5 offer benefits for flexibility and freedom to deliver ads across platforms, and rich media
ads are driving adoption of HTML5. While the race to develop and deliver ads in HTML5 has already begun,
the baseline for HTML5 ads needs to be established before we can take the next step in in defining specific
formats and richer capabilities such as ad expansion, wallpaper and transparency layers. This section presents
a general definition for HTML5 Display Ads until a more formal definition is defined. The HTML5 display ad
described here includes essential format traits, file size and compression considerations, and ad delivery
methodologies. Sections that follow provide recommendations for any video or animation, respectively that may
be included in an HTML5 display ad.

2.1 HTML5 Display Ad Essentials
Establishing a definition for HTML5 display ads enables better communication and workflows among parties
across the ad delivery chain and presents a baseline for richer ad creative developments and executions. The
HTML5 ad presented in this document is the most basic ad format from which richer formats can be built on;
these ads are limited to the following traits: does not expand out of its boundaries and is not dynamic (or
doesn’t ingest external feeds). These HTML5 display ad restrictions meet requirements for the majority of non-
rich media ads viewed online and are sufficient to support richly animated ads for maximum compatibility
across placements and the ad servers that support them.

Before developing HTML5 ad creative, be sure to consider the technical requirements of the pertinent vendors
and partners for ad delivery (ad server and publishers). Such points to remain top of mind are listed below, but
guidance on each is provided further into the document:

• File Size limits
• Packaging
• Coding ClickTags for the Click through URL to enable click tracking
• Backup Image or Fallback Experience

2.2 File Size
HTML5 did not become an official recommendation until December 2012, nearly a year after the IAB Display
Advertising Guidelines: The New 2012 Portfolio was released. As such, file size limitations were not taken into
account for ads developed using HTML5. Current file size limits for ads developed with Flash are sufficient
because Flash files can be compiled, compressed, and packaged to accommodate smaller file sizes.

However, HTML5 doesn’t have these compression and packaging capabilities, and with high-density displays
permeating the market, larger creative assets are necessary in HTML5 to produce crisp visuals. Until IAB Display
Advertising Guidelines is renewed to accommodate HTML5 and high-density displays, the following guidelines
are set forth for HTML5 ads.

File Size Measurement Definitions for HTML5 Ads
• File size limit of 75-100 KB, measured after compressing the ad (all code and assets) to a .zip file
• The .zip file must include all referenced code such as Javascript libraries
• Once the .zip file is uncompressed, the ad (an .html file) must be viewable without a network

connection (all code and assets used in the ad is contained in the .zip file)

© 2013 Interactive Advertising Bureau 9 HTML5 for Digital Advertising_v1.0_draft

File Size Limits
All assets and code for an HTML5 ad should be zipped and delivered together as one file to be unpacked and
processed by the publisher. Some files such as Javascript libraries and Web fonts can be called from another
location, but the file size of any external files should be considered as part of the initial overall file size because
they contribute to ad load performance. Exceptions exist, such as for user-initiated videos, which may be
excluded from the initial ad load file size. The maximum file size for additional files should be negotiated with
the publisher.

Well-accepted Javascript libraries, such as jQuery, must be included into the total file size. While this
requirement may prove challenging, the limitation was defined to encourage improved ad load performance
despite the larger file size. Improvements in library innovation and library version mismatching should help
reduce library file size so that more of the maximum file size can be devoted to creative imagery.

The total file weight, including the Javascript libraries, must be known to the ad server in order for it to guarantee
a certain level of ad drop-off rate to both advertisers and publishers as well as ensure that the file weight stays
under the publisher threshold.

2.3 Optimization of Ad Creative Packaging
Flash automatically provides optimizations for code and assets; it compiles everything into a single file, which is
already compact with minimal number of files. For HTML5 ads, IDE or other tools that provide similar
optimizations are not yet available. To further complicate the matter, HTML5 is an open web technology, which
means a large degree of freedom is exercised in how content is built and delivered. Special attention to how an
ad creative is packaged and delivered is required for quick ad load time, for establishing some common
expectations, and to minimize negative impacts to the publisher and consumers. This section highlights some of
the important optimizations that are crucial in adopting HTML5 for digital advertising.

2.3.1 Code and Asset Compression

Code Compression
HTML, CSS and Javascript code are typically written in legible text that is highly compressible. Code minifiers
and compilers help reduce file size by removing characters like white spaces and line breaks that make the
code legible to humans but are not necessary for computers to execute. Minifying code reduces the input
required for a coded ad to be compressed, resulting in a smaller ad file for web servers to uncompress.

Asset Compression
Creative development tools for graphics, video, and audio offer a wide array of options for balancing quality
with file size. Asset compression is increasingly important with high-density displays. To compress assets, use
PNG “crushers” and other forms of image compression, and leverage formats such as scalable vector graphics
(SVG) whenever applicable. SVGs can scale indefinitely to high-resolution displays without increasing file size.

Text or Web Fonts
Certain logos and brand names must be provided as images. However, ads with a lot of text or dynamic text
content can benefit from using text directly in HTML documents. HTML text should be used whenever possible
while incorporating web fonts rather than attempting to bake the text into an image. When using web fonts,
consider applying subsets, subsets don’t require character download, and many web font products offer subsets
of the entire character set so that you can easily reduce font file sizes.

© 2013 Interactive Advertising Bureau 10 HTML5 for Digital Advertising_v1.0_draft

When web fonts must be accessed externally rather than downloaded along with the file, the external font file
size must be calculated as part of the total file weight even though it’s not included within the zipped asset file.

2.3.2 Minimize File Count
Ads with smaller file size reduce both load time and negative impacts to publishers and the consumer viewing
experience. To help in reducing the overall weight of an ad, the number of individual files included for
download should be minimized. For every file delivered, the browser must open a new socket connection, which
can reduce browser performance as it waits for each new socket to be opened. Some ISPs or mobile carriers
limit the number of sockets a device can open in parallel, causing a linear lineup of file downloads. While
processing performance isn’t reduced, the added wait time is perceived as reduced performance.

To reduce the number of individual files for an ad, consider the following:

• Sprite sheets for ads that include several small assets.
• Code compilers that can take all code (Javascript, CSS, HTML, etc.,) and produce a single file.
• Base64 encoding of smaller images into the HTML file reduces the number of files. However, Base64

adds weight to the image and causes it to be un-cacheable, not compatible with IE 6 or 7, and is not
compatible with IE 6 or 7.

2.3.3 Central Processing Unit (CPU) Resources
Javascript is single-threaded, meaning that for most browsers; there is a single thread that renders both the
publisher’s page and the HTML5 ad, even if the ad is in an iFrame on a separate domain. In this model, the
publisher page may be processed on a different CPU than the ad. Other assets rendered from other sources in
this single thread of code may also be processed on other CPUs. Running an ad within applications, especially
on mobile devices, using ad SDKs further enhances the complexity of processing logistics.

To improve processing power and simplify logistics, code the ad with CPU utilization in mind and leverage the
graphics processing unit (GPU) that exists in most devices whenever possible. Creative developers should
maximize code efficiency as much as possible so that it never uses the CPU to its capacity. Also, using CSS
styling and transitions for animations divert processing power to the GPU instead of using the CPU.

Considering gzip compression:
Most ad servers will send the packet for the ad as a .gz (gzipped) file to ensure that files are compressed
before they are sent over the Internet. Ad designers are not required to use gzip compression, but should
consider gzip as a useful tool since nothing is lost in the compression, but results is a smaller file size. Efficient
code and assets with optimum compression is important for the best performance and consumer experience.

2.4 Ad Server Compatibility
To bring scale to the ecosystem, an ad designer using creative tools or hand-coding must be confident that ad
servers can accept the HTML5 ad produced. Critical to enabling proper rendering and metric counts, the ad
creative should be coded correctly for ad servers to appropriately associate view and click tracking functions to
the defined assets. This section defines the general recommendations for maximizing compatibility with the ad
server. Before beginning HTML5 ad development, communication with ad server technology providers
regarding specific technical requirements is vital to developing a successful HTML5 ad experience.

© 2013 Interactive Advertising Bureau 11 HTML5 for Digital Advertising_v1.0_draft

2.4.1 Click Tag
The ability to accurately measure when a consumer clicks the ad (click through) is a critical feature of any ad
server. Ad servers must be able to identify the click destination of the ad and swap it out with something it can
control, most commonly a redirect URL that, when initiated, logs the click. In order to record click throughs, the
ad server, the publisher, and any other parties involved must know what to look for, so the code identifying the
click and its destination is formatted in a standard way.

To format click through URLs, use the “click tag” variable for storing the click destination as shown in the
following example:

var clickTag = “www.example.com”; 	

The click tag should be placed in the .html file without minification or obfuscation. This helps the ad server find
the variable easily so that it can substitute the correct value. When multiple .html files are included, the variable
must be present in the first .html file that loads.

Ads must use the	
 clickTag variable as the destination of the click event, whether handled by anchor tags
(<a>), window.location, window.open, or any other method of navigating the user.

2.4.2 Ad Unit Size (Dimensions)
Ad dimensions need to match placement dimensions where the ad will display on the publisher page. For
example, when a 300x250 ad is served to a placement for a 300x600 placement, the ad is distorted to fit the
placement. To prevent distortion, ad servers are built to detect ad dimensions for uploaded creative files
Detecting dimensions for standard images and .swf files is well established, while defining creative dimensions
for HTML5 ads is optional.

One of the powerful characteristics of HTML5 is how easy it is to generate ads that adjust to the container size
dynamically, similar to a web-page viewed on browsers of different window sizes. No recommendation is given
at this time for a responsive ad size. If the width and/or height are left undefined, the publisher or other ad
display technology may either disregard the ad unit dimension requirements, or consider the creative to be
responsive in size and react according to its policy on responsive ad sizes. Check with the ad server or
publisher on their policy for ad unit dimensions.

Defining Ad Size Dimensions for HTML5 Ads (Optional)
When choosing to define creative dimensions for HTML5 ads, optional functions such as	
 <meta> tags or
viewports can be applied to the creative code. 	

<meta>	
 tags:	
 	

<meta>	
 tags are optional elements that are read by the browser for helping systems identify the size of a
creative for a placement. But some methods cannot utilize this option, such as content modules because there is
no place to apply the tag. Additionally,	
 <meta> tags can be applied either within the <head> tag, or the
<body> tag depending on your organization’s need or practice. The following protocol provides a standard
way to define creative dimensions using a <meta> tag:

Within the <head>	
 tag, use the	
 <meta>	
 tag with the name “ad.size” to mark the ad dimensions. For example, if
the ad was built as a 300x250, define it as follows:	
 	

	

<meta name="ad.size” content=”width=300,height=250”>	

© 2013 Interactive Advertising Bureau 12 HTML5 for Digital Advertising_v1.0_draft

2.4.3 Ad Serving Methodologies
To enable an independent ad space within the publisher’s page and avoid naming collisions between page
and creative elements, ad servers and publishers serve HTML5 ads into an iframe. Iframes help ensure security
for publishers, but they limit the use of advanced ad features such as ad expansion and other interaction that
requires cross-domain communication.

IAB SafeFrame Solution
The IAB SafeFrame solution is based on iframe technology that uses an API to enable cross-origin
communication between the publisher page and any creative served into the SafeFrame. This solution enables
rich creative with expansion features to be rendered in an iframe, as well as metadata sharing and other
interactions not previously possible from a standard iframe. SafeFrame is also a key element in enabling
viewability measurement.

Nested iframes
Whether served into a standard iframe or an IAB SafeFrame, both the publisher and ad server may create an
iframe, which results in a situation where the ad server iframe is nested within the publisher iframe. Other
technology vendors in the supply chain compound the nested iframes situation by defining their own iframes for
served content. Though done to contain content and protect one party from the other, the end result is a chain of
nested iframes that prevent any of the parties from interacting properly. Nested iframes create barriers in
communication between parties, resulting in a lack of transparency, inability to share metadata, and limits
interaction metrics.

The benefits of the SafeFrame solution are negated with nested iframes. SafeFrame was intentionally designed
to only communicate with the top-level iframe that is part of the SafeFrame implementation. While traditionally
frame-bounded content can still function in a nested iframe within the SafeFrame, proper viewability
measurements and metadata sharing are disabled on the serving side of the nested iframe relationship.

Although creative developers don’t define the iframes that ads are served to, to take advantage of solutions like
SafeFrame, all parties should communicate ad serving methodologies and logistics between the ad server and
the publisher. Communication will ensure that when creative is served to a SafeFrame, a Javascript tag is used
instead of an iframe to serve the ad content.

For more information on SafeFrame, please visit	
 http://www.iab.net/safeframe.

Web Applications and IAB MRAID
In the case of serving ads into ad software development kits (SDK) for mobile applications, a WebView that
contains only the ad achieves: independence, segregation and the ability to render a full HTML document. For
ad expansion and other rich interactions, the IAB Mobile Rich media Ad Interface Definition (MRAID) offers an
API for interacting with mobile applications. Although originally defined for mobile, this interface should be
applicable to ad serving SDKs and WebViews regardless of the device. Even with SDK and WebView
applications, an ad server may still serve the ad into an iframe, but iframe or not, check with your ad server to
ensure the ad creative is given the space it needs to display as designed.

For more information on MRAID, please visit http://www.iab.net/mraid.

© 2013 Interactive Advertising Bureau 13 HTML5 for Digital Advertising_v1.0_draft

2.5 Backup Image Experience
Flash players are easily detected in today’s Web browsers. Thus, the Javascript checks for Flash before
downloading a .swf file. If Flash is not supported, a static image is downloaded instead. This backup image is a
separate creative that ad servers accept from ad designers in addition to the .swf file. In most cases, the backup
image file is required.

In HTML5, the ad and its features need to be compatible with the browser to which it is served in order to
display (render) as intended. Compatibility depends on which APIs the HTML5 ad uses and whether the
browser supports each of those APIs. Since HTML5 is a collection of APIs that browser manufacturers can adopt
to be compliant, browsers can choose to implement all or partially, without any particular order or priority. In
short, whether a browser supports “HTML5” or not is undefined and as of the release of this document, ad
servers are not designed to detect HTML5 compatibility in browsers.

HTML5 Fallback Recommendations:
Considering the lack of HTML5 identification, the client and the creative developer should discuss various
features of the ad and acceptable browser scenarios. Fallbacks should be designed as part of the ad creative.
Fallback preparation should include testing ad features across browsers to ensure acceptable rendering as well
as static images when required by publishers. Additional recommendations to help ensure HTML5 ads work as
designed include:

• Ad designers must be aware of HTML5 features they use. Depending on the API usage, an ad

can be compatible with all existing browsers or only a certain subset. There are several tools available to
identify which browsers support which features, for more information, see the IAB Wiki:
HTML5_for_Digital_Advertising_Resources.

• “Graceful degradation” is highly recommended. Just because one feature is not available on a
given browser where the ad is rendering does not mean that the ad is incompatible. For example, if getting
the geo location is not available in the browser, the ad can fall back to the user typing in the zip code or
city name.

• No mandatory backup image is necessary, given that the ad server cannot control when to show it.

Instead, the ad code must detect if certain features or APIs are failing and, if so, the ad should degrade
gracefully. Libraries such as Modernizr help with browser feature detection at run-time.
	

• <noscript>	
 Tag should be applied, this provides a path to an alternate image when users have scripts
disabled in their browser, or don’t support client-side scripting. Check with your ad server to see if they use
a no script tag to deliver a static image to users that have Javascript disabled in the browser. If this is the
case, you will need to create static image.

Ad designers may be challenged as they design fallbacks for each HTML5 feature used, but the effort involved
defines the consumer experience and therefore the effectiveness of the ad. As HTML5 adoption increases across
the industry, creative tools will soon evolve to aid designers in HTML5 ad development. Also, browsers will
eventually improve their support of the HTML5 standard, which will further reduce compatibility fragmentation.

© 2013 Interactive Advertising Bureau 14 HTML5 for Digital Advertising_v1.0_draft

2.5.1 Zip File Contents
 The .zip file that is passed to the ad server should follow the guidelines below:

 There must be at least one .html file (the starting point of the ad) in the .zip. If multiple .html files exist,
the ad server should prompt the uploader for the appropriate .html file to use as the starting point.

 Structure files as needed. No specific rules are outlined for the folder structure of the .zip file. Files may
be organized in subfolders or may be present solely within the root folder.

 All code and assets should be relatively referred to by the .html file
 Minimize the number of files included within the .zip file. For performance reasons, some ad servers

may limit the number of individual files that may be included with the ad.
 All code and assets needed to run the ad should be contained in the .zip file. The ad needs to be self-

contained so that rendering the ad is not dependent on a network connection. Exceptions include files
such as Javascript libraries or web fonts, but the file size of these external files should still be
considered part of the overall file size if they are loaded upon the initial file load.

	

HTML5 Display Ad
Note

The guidelines do not address rich media ad executions. For more advanced ads or rich media
executions, ad servers and publishers may have separate requirements, limits or guidelines
specific to the ad type.

3 In-Banner Video
The following sections establish a set of guidelines for HTML5 creative that make use of the video tag so that
creative designers can produce ads with video that function correctly across multiple browsers.

In-Banner Video vs. In-Stream Video
HTML5 in-banner video is defined as an ad with video that is served to a Web browser. Conversely, an ad can
be served to a video player, which is defined as in-stream video. At this time, this document only covers in-
banner video ads that are served to browsers.

3.1 HTML Video Tag
Before HTML5 video, creative designers would create video playback from within the Flash (SWF) creative.
Because the Flash Player was ubiquitous across all desktop screens, this created a video solution that would run
flawlessly across multiple browsers. However, with the emerging phone and tablet market, marketers and
creative developers are faced with building a "browser only" solution using HTML5's video element.

Syntax for Implementing an HTML5 Video Element
• Define the video within the HTML5 code using the following tags:	
 	

<video></video>

Defining the video includes providing the source filename and the width and height. You can also
indicate default video player controls, style your own in the CSS file, or leave them out altogether.
Include attributes to customize the video experience for your particular use case.

© 2013 Interactive Advertising Bureau 15 HTML5 for Digital Advertising_v1.0_draft

• Video without controls:
 <video src='yourVideoFile.mp4' height='640' width='360'></video>	

The video element defined above instructs the browser to render an HTML5 video element to playback
the file, "yourVideoFile.mp4" at the dimensions 640x360.

• Video with controls:
 <video controls src='yourVideoFile.mp4' height='640'
 width='360'></video>

The added controls attribute render's default video player controls. If you wish to create your own controls over
the video player you will need to remove the controls attribute from the video tag and define the look and
functionality by using your own CSS and Javascript.

HTML5 Video in
Mobile Phones

On mobile phone devices all video is rendered in the native video player at full screen. As a
result custom controls do not apply in mobile phone devices.

Video Full Screen

To provide the option to play back video in full screen mode, you must leverage the W3C
Fullscreen API. As of the publish date for this document, the API was in a working draft state. To
ensure proper function, the HTML5 ad must detect whether the feature is supported in the
targeted browser. Some vendors require implementing a prefix for proper support.

Transparency
Alpha transparency is not supported in any codec or wrapper format using the HTML5 video
element—as of the publishing of this document. Until this feature is supported, Flash must still be
used to achieve an immersive ad experience using transparent video.

3.1.1 Browser Support
While the HTML5 video element is widely supported among the latest major browser vendors, the video asset
itself needs to be transcoded into a few different formats to ensure cross browser functionality. Resources to
check the most updated browser support are provided in the IAB Wiki,
HTML5_for_Digital_Advertising_Resources.

As of this publication, the most common formats that are supported are H.264/MP4 and VP8/WebM. At a
minimum, HTML5 video should be transcoded into these two formats. Multiple video formats can be provided
within the <video> element by identifying multiple <source> tags, as shown in the example below:
	

<video controls height='640' width='360'>
 <source src='yourVideo.mp4' type='video/mp4' />
 <source src='yourVideo.webm' type='video/webm' />
</video>	

	

To ensure proper functionality across both HTML5-supported browsers and older ones that lack necessary
support, incorporate code designed to detect browser and device details. When HTML5 is not supported as
needed to play the ad’s video, design the ad to “degrade gracefully,” or fallback on an alternate method for
displaying the video, such as with a backup Flash file.	
 	

	

© 2013 Interactive Advertising Bureau 16 HTML5 for Digital Advertising_v1.0_draft

The following code sample provides an example of how to embed a Flash video to fall back on should the
HTML5 video not be supported:	
 	

	

<video controls height='640' width='360'>

<source src='yourVideo.mp4' type='video/mp4' />
 <source src='yourVideo.webm' type='video/webm' />
 <! -- Flash Code Here -->
 <embed src='yourVideo.flv' width='640' height='360' quality='high'
type='application/x-shockwave-flash'></embed>
</video>

By including the Flash failover code within the <video> element, the browser will omit the video tag if it does
not recognize it and use the Flash code instead. Conversely, browsers that support the video element will not
render the portion within the video tag, in this case our Flash embed code.

3.2 Video Events
A crucial part of ad measurement understands time spent and interactions within a video ad experience.
Through the HTML5 Video Javascript API, we can listen and handle for such events as: video start, play, pause,
and progress percentage.

Official IAB metrics have not been developed for in-banner video, but metrics developed for digital in-stream
video may serve as a useful reference for establishing common metrics within in-banner video. Please review the
IAB Digital Video In-Stream Ad Metrics Definitions.
	

To	
 detect	
 events	
 using	
 Javascript,	
 reference	
 the	
 <video>	
 element	
 within	
 your	
 ad	
 creative	
 and	
 add	
 an	

event	
 listener	
 for	
 the	
 specific	
 event	
 you	
 want	
 to	
 handle.	
 The	
 following	
 example	
 demonstrates	
 how	
 to	

detect	
 events	
 by	
 listening	
 for	
 a	
 “play”	
 event.
	

var theVideo = document.querySelector('#theVideo');

theVideo.addEventListener("play", videoStartHandler, false);
function videoStartHandler (event) {
 console.log("Video Start Event "+ event);
}	

	

For a comprehensive resource on the HTML5 Video Javascript API, please visit the W3C page: HTML5 Video
Events and API.	

3.3 Forced Video
In some cases creative designers can leverage video playback to replace animation that was too large for
specified file size limits, or for other reasons, have the video play as soon as the ad loads. To have an HTML5
video play upon being loaded, declare the Autoplay attribute:

<video autoplay src='yourVideoFile.mp4' height='640' width='360'></video>

Autoplay on mobile devices is not allowed, as per the Mobile Phone Creative Guidelines. While most mobile
devices ignore this attribute, if the mobile device is not set to autoplay, the video may still be forced on users by
other means. Forcing autoplay on mobile devices while tied to cell carrier networks (2G, 3G, 4G), may result in
unexpected overage fees for the device owner.

© 2013 Interactive Advertising Bureau 17 HTML5 for Digital Advertising_v1.0_draft

Forced Video with Audio
Audio must be user initiated to play, and while video may play automatically in non-mobile devices, audio must
be set to a muted state until the user initiates it, per the	
 IAB Display Creative Guidelines.	

3.4 Delivery and File Size
One of the biggest concerns with HTML5 video is around delivery. Traditionally, Flash ads pulled video from a
streaming server to avoid incurring any of the video's file size in the ad's overall k-weight. However, most
HTML5 video delivered over desktop and mobile default to progressive download (video file is downloaded
just as an image would be) instead of using a streaming format where the video is processed in real-time
sending small packets of video information from its originating location over HTTP to the end user.

While progressive download is widely supported across all browsers, the video file is included as part of the
ad’s file size limit. The bigger the file, the more the consumer experience is negatively affected with longer wait
times and a perception that the publisher page is slow. The problem is amplified when video bitrates increase
for larger dimensions and higher quality video assets (HD).

Video File Size Limit
Whenever delivering video, the file weight must be kept small, but this recommendation is especially applicable
when targeting mobile devices that may be connected to limited data plans. IAB Display Advertising Guidelines
recommend unlimited, user-initiated streaming video. However, these guidelines were defined for display on
non-mobile devices. Until guidelines are defined for mobile video ads, a video file size of 2.5 MB or smaller is
recommended.

For HTML in-banner video ads that are specifically targeted to mobile devices, some delivery tools are available
to help improve video file delivery to mobile devices. For more information, please visit IAB’s site for HTML5
tools at	
 IAB Wiki: HTML5_for_Digital_Advertising_Resources.	

4 Animation
HTML5 animation can be incorporated into display ads in a number of ways and may not be processed the
same way as traditional methods. Certain considerations for performance, execution, and publisher/ad server
requirements must be taken into account. The following sections offer recommendations for navigating HTML5
animation options.

4.1 Animation Performance
Creative designers have various animation methods to choose from, but the choice of certain animation
elements can overwhelm the CPU and affect ad load performance.

CPU usage can be affected by various animation elements including the number of objects being moved
simultaneously, the efficiency of the animation code, excessive animated images with transparency, multiple
simultaneous CSS3 effects, and the complexity of the document’s layout. All of these items impact and
determine the amount of work required of browser to render each frame. To avoid animation affects that are
excessively CPU intensive, consider proper use of	
 setInterval, setTimeout,
requestAnimationFrame, loops, manipulation of DOM elements, etc. and optimized accordingly.	

© 2013 Interactive Advertising Bureau 18 HTML5 for Digital Advertising_v1.0_draft

4.1.1 CSS Animations Vs. jQuery/Javascript Animations 
Animation can be coded through the use of CSS or jQuery/JS but it is important to be aware of their functions
and capabilities before determining which to apply.

jQuery/JS animation offers more control over CSS methods, and when targeting audience’s browsers, results
in fewer issues with Internet Explorer 7 and 8 and other older browser versions. When key animation must be
seen on desktop browsers jQuery may be necessary. The downside of using jQuery is the extra overhead of
loading Javascript as the ad's code runs, resulting in a delay in the play of the animation.

CSS animation is encouraged for improved performance because it is native code that can execute quickly and
involves less coding, which eases the use of the processor. And, in the case of non-supported browsers, if you
are comfortable with gracefully degrading the animation, then CSS is your best option over jQuery.	

Examples	
 of	
 Animation	
 Coded	
 in	
 CSS	

Example 1: Simple Spin Animation
This CSS-coded animation defines an element named “diagonal-slide” that moves from (0,0) to (100,100)
within the duration of 5 seconds and repeats a total of 10 times:

div {
 animation-name: diagonal-slide;
 animation-duration: 5s;
 animation-iteration-count: 10;
}

@keyframes diagonal-slide {

 from {
 left: 0;
 top: 0;
 }

 to {
 left: 100px;
 top: 100px;
 }

}

Example 2: Expanding Element with CSS Transition Properties
This CSS-coded animation defines a “div” that expands from 100 x 100 to 300 x 100 when hovered over:
(This example does not work with Internet Explorer). Included in this example is the use of a stack for multiple
browsers dealing with a transition. Vendor prefixes are necessary when needing to handle all browsers (non-
mobile); this is used through the application of a stack in your code:

-webkit-transition: CSSPROPERTY time ease;
-moz-transition: CSSPROPERTY time ease;
-o-transition: CSSPROPERTY time ease;
transition: CSSPROPERTY time ease;

© 2013 Interactive Advertising Bureau 19 HTML5 for Digital Advertising_v1.0_draft

div
{
 width:100px;
 height:100px;
 background:red;
 transition:width 2s;
 -moz-transition:width 2s; /* Firefox 4 */
 -webkit-transition:width 2s; /* Safari and Chrome */
 -o-transition:width 2s; /* Opera */
}

div:hover
{
 width:300px;
}

For more examples of CSS animation, refer to the W3C site (http://www.w3.org). The W3 organization
defined HTML5 and provides plenty of resources to help encourage adoption.

Animation in Javascript
In general, developers using Javascript should adhere to industry-established and widely accepted Javascript
best practices. This document refrains from defining Javascript best practices, but provides the following
suggestions to consider:

• Optimize loops and timers
• Minimize DOM access
• Ensure responsiveness and performance
• Feature-detect rather than browser-detect, to more easily and efficiently check if functionality exists and

can be utilized within the page
• Avoid the use of the eval() function, to avoid potential security risks
• Avoid global variables that may result in naming conflicts and cause code to break
• Account for syntax differences and requirements between browsers (particularly in IE)

4.1.2 Animation Frame Rate (FPS – Frames per Second)
Unlike Flash there is no true FPS setting within an HTML5 document. To comply with current IAB creative
guidelines (Display & Mobile) and to mitigate negative impacts to browser performance, this section provides
guidelines for animation frame rate for an HTML5 document.

Defining FPS
The frame rate should still follow the 24 FPS as defined in both the IAB’s Creative Display Guidelines and Mobile
Phone Creative Guidelines, and should be defined as a variable within Javascript:

const fps = 24;

Once the variable is defined, calculate the FPS by dividing 1000 (1 second) by the value of the fps variable.
The result determines the number of milliseconds between each animation frame:

var animationTime = 1000/fps;

© 2013 Interactive Advertising Bureau 20 HTML5 for Digital Advertising_v1.0_draft

Applying Animation Method
After the animation time is determined apply one of the two animation methods,	
 setInterval or	

requestAnimationFrame.	
 	

setInterval	
 	

Used to call an animation function repeatedly on each interval, which is defined within the animationTime
variable, to simulate animation: 	

setInterval(animationFunction, animationTime);

requestAnimationFrame	

An alternative to	
 setInterval, but doesn’t allow the developer to specify an interval rate. The
requestAnimationFrame	
 method requests that the browser draw the animation at the next available
opportunity rather than at a predetermined rate, allowing for animations to run at the highest FPS possible.
Using this method, frame rate is based on the screen refresh rate, which is usually 60Hz.	
 	

requestAnimationFrame	
 and	
 setTimeout
Most ad technology expects that a frame rate be specified and IAB Display Guidelines define a maximum
frame rate. To provide an optimal frame rate that takes advantage of the	
 requestAnimationFrame	
 method,
it must be used in combination with setTimeout as modeled in the following example: 	

const fps = 24;
function update() {
 setTimeout(function() {
 requestAnimationFrame(update);
 // animation code goes here
 }, 1000 / fps);
};

requestAnimationFrame Feature Check
The creative should contain code that checks the user’s browser for support of the
requestAnimationFrame	
 feature in order to safely use it. The following code will perform this essential
check and if the feature is not supported, the ad will fall back to using	
 setTimeout. Code for handling the
cancellation of a	
 requestAnimationFrame loop is included: 	

if (!window.requestAnimationFrame) {
 window.requestAnimationFrame = (window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 function (callback) {
 return window.setTimeout(callback, 60);
 });
};

if (!window.cancelRequestAnimationFrame) {
 window.cancelRequestAnimationFrame = (window.cancelAnimationFrame ||
 window.webkitCancelRequestAnimationFrame ||
 window.mozCancelRequestAnimationFrame ||
 window.msCancelRequestAnimationFrame ||
 window.oCancelRequestAnimationFrame ||
 window.clearTimeout);
};

© 2013 Interactive Advertising Bureau 21 HTML5 for Digital Advertising_v1.0_draft

4.1.3 Executing Animation
Outside of using CSS3-driven animation, animation can be executed in two specific ways within the browser.
The first method, once popularly referred to as DHMTL, requires using Javascript to move and
manipulate DOM elements. However, this method is not actually part of the HTML5 spec. The second method is
included as part of the HTML5 spec and requires using Javascript, but instead of moving and
manipulating DOM elements, it animates by moving and manipulating pixels within an HTML5 Canvas element.

Pros & Cons of Canvas and DOM Elements:
Using Javascript to execute animation takes advantage of Canvas and can improve performance. Canvas
focuses on the high performance of 2D graphics, so its peak performance is generally higher than that of
the DOM, which is more focused on content and interaction. Canvas also provides a more consistent API than
the DOM. In some cases, Canvas and DOM elements can be combined to take advantage of the text handling
abilities of the DOM with the animation and graphical capabilities of Canvas.

Both Canvas and DOM elements can be hardware accelerated and achieve incredibly smooth animations while
simultaneously having to perform numerous and complex calculations. Tasks that would have otherwise been
calculated by the main CPU can be offloaded to the GPU in the user’s computer graphics adapter, yielding
tremendous performance gains and also reduces resource consumption on mobile devices and tablets.

GPU Execution on DOM and Canvas Elements
The following technique can be used to force the GPU to optimize and execute 2D animations on both the
DOM and Canvas elements; however, simply applying this transformation doesn’t guarantee any increase in
performance and the results can be inconsistent. Results of the technique may only increase CPU processing and
battery usage without increasing performance.

Apply the following CSS to your animated DOM element (in this case a div) or your Canvas element:

canvas {
 -webkit-transform : translateZ(0);
 -o-transform : translateZ(0);
 -moz-transform : translateZ(0);
 transform : translateZ(0);
}

div {
 -webkit-transform : translateZ(0);
 -o-transform : translateZ(0);
 -moz-transform : translateZ(0);
 transform : translateZ(0);
}

HTML5 Canvas Feature Support Check
In order to safely use HTML5 Canvas the creative should contain code that checks the user’s browser for
support of this feature. The following code sample is a way to check for Canvas support, and if the feature is not
supported, then it will fall back to whatever content is contained within the Canvas tag, typically a
static JPEG version of the ad.

© 2013 Interactive Advertising Bureau 22 HTML5 for Digital Advertising_v1.0_draft

function canvasSupport(){
 return !!document.createElement('canvas').getContext;
};

if(!canvasSupport()){
 var fallback = document.getElementById('fallback');
 fallback.src = imagePath + 'backup.jpg';
 return;
};

4.1.4 Feature Detection
The general practice for HTML5 ads is to include code that detects whether features built into the ad are
supported in the browser where it is served, and if not supported, offer an alternate experience for the ad to
replace the experience that cannot execute because of the unsupported feature. Check the IAB Wiki:
HTML5_for_Digital_Advertising_Resources for tools that can help you check for feature support in select
browsers.

5 HTML5 Tools
There are a number of tools, utilities, and companies that can help you with HTML5 creation and adhering to
the suggestions in these guidelines. A place to find a collection of tools is IAB Wiki:
HTML5_for_Digital_Advertising_Resources.

In general, the toolsets for designers and developers will differ. Designers will need tools that focus on
producing the creative assets and developers will need tools for the CSS, Javascript and HTML5 files.

5.1 For Designers
HTML5 Mobile Rich Media
Some of the most powerful tools are available from Rich Media ad vendors. These often provide a complete
environment for ad creation using templates or components to build your ad and include ad-friendly features
like video, geo-location, and mobile calls to action.

As digital advertising specialists, these companies already adhere to many of the best practices outlined in this
document. Look for tools that:

• Generate universal tags for cross-platform delivery
• Support animations and transformations
• Import animations and custom HTML from other tools
• Provide components to build ads without hand-coding
• Support web standards and IAB MRAID & SafeFrame API’s
• Deliver ads that are lightweight and optimized for various platforms

Image Creation Tools
In general, the tools you use today to create images will still be appropriate when developing for HTML5. The
most important aspect is generating the output. Creatives should be saved as PNG, JPG, or GIF files with
attention to file size and clarity. Expect to use other tools for image compression, optimization, and sprite
creation. Also note that animated GIF images are not supported on many mobile devices.

© 2013 Interactive Advertising Bureau 23 HTML5 for Digital Advertising_v1.0_draft

HTML5 Animation Tools
HTML5 animation tools attempt to replace the Flash building experience with a frame-based animation builder
using HTML5. When choosing an animation tool, give special consideration to the generated output. Some
tools require additional Javascript libraries which makes the output too heavy.

• Can be used on your platform (Mac, PC, online)
• Generates small files without external Javascript
• Provides cross-platform support, especially for mobile
• Follows current standards for HTML5 and CSS3
• Follows advertising standards like the IAB’s MRAID for advertising in-app

Flash Converters
There are tools that attempt to convert Flash files to HTML5. These have limitations, not all features can be
converted and optimization may be limited. Look at these tools as a possibility to convert simple Flash files or to
“jump-start” a larger conversion effort.

HTML5 Website Tools
Many website building tools are incorporating HTML5 features and provide a designer-friendly layout for drag-
and-drop creation.

Because these are general-purpose tools, the generated HTML5 lacks some best practices for ad creation. For
these tools, you should expect to do some hand-coding after the initial designs.

• Supports responsive layouts
• Provides mobile device previews
• Includes web fonts
• Has a code-view

5.2 For Developers
Browser Reference
As you consider cross-platform and cross-browser support, having a reference is essential. HTML5 is an
emerging standard and support for CSS3 is not complete for all vendors. Consider a site like
http://caniuse.com/ that is updated often to provide up-to-date information.

Javascript Libraries
Using Javascript libraries is a common practice in web-site building, but is not always the right approach for ad
building. Look for libraries that do not conflict with publisher sites and can be optimized to include only the
methods you use.

Code Compression
To serve quickly, look for code compression tools that can reduce file size. Better tools also provide obfuscation
and can be incorporated with development or production tools to run automatically.

Image compression
Image optimization is often the most effective approach to reducing file size. Look for tools that provide lossless
optimization, can work on a batch of files, and allow you to choose a compressed image from a preview.

© 2013 Interactive Advertising Bureau 24 HTML5 for Digital Advertising_v1.0_draft

Sprite Generators
These tools create a single image from several smaller images which is a great technique for limiting the number
of connections and improving load times. Look for a tool that not only combine images to a single sprite, but
also provides the CSS to display the portion of sprite needed in your ads.

Web Fonts Technology
Font foundries also provide fonts for the web and tools to include them. Look for plug-in support that make it
easy to include web fonts in your other creative tools, and support for font subsetting where only the letters
needed for your creative are downloaded to the device.

© 2013 Interactive Advertising Bureau 25 HTML5 for Digital Advertising_v1.0_draft

6 Terminology
Animation: A programmatically generated display of sequential frames or transitioning images, creating the
illusion that objects in the image are moving. Not digital video, as it relates to this document.

Application Programming Interface (API): Application Programming Interface is a set of commands,
the language that programmers or developers use to communicate with a specific piece of software or
hardware. Mobile ads delivered in apps use an API to communicate with the SDK that is built into the app.

Base64 Encoding: Is when you convert image information into text (radix-64 representation) and paste it into
a document instead of making additional server request to load the image.

Bitrates: a measure of bandwidth which indicates how much data is traveling from one place to another on a
computer network. Bitrate is usually expressed in kilobits per second (kbps) or megabits per second (Mbps).

Canvas: an HTML5 element that is a resolution-dependent bitmap container used for rendering graphics,
interactivity and animation dynamically through Javascript directly within the browser and without the need for
any 3rd party plug-ins. Canvas provides a set of functions (“the canvas API”) for drawing shapes, defining
paths, creating gradients, applying transformations and more.

Code Minification: practice of removing unnecessary characters from code to reduce its size, removing
unnecessary spacing, and optimizing the CSS code; thus improving load times.

Central Processing Unit (CPU): the key component of a computer system, which contains the circuitry
necessary to interpret and execute program instructions.

Cascading Style Sheets (CSS): language used for describing the presentation semantics (the look and
formatting) of a document written in a markup language.

Degrade Gracefully: When a developer codes an ad unit using the latest HTML features and it is viewed
by a less feature-rich browser the ad should “degrade” in a way that is still functional, but with fewer
features. (Also referred to as Graceful Degradation)

Document Object Model (DOM): The DOM is a W3C standard for accessing documents like XML and
HTML. The HTML DOM defines the objects and properties of all HTML elements, and the methods (interface) to
access them. Javascript can be used to move and manipulate DOM elements to create animation.

Frame Rate: The rate at which video frames or animated images display as the video or animated file
executes, measured as the number of frames per second (fps).

Frames Per Second (FPS): metric used to indicate the frame rate of animated or video creative content.

Graphics Processing Unit (GPU): GPU handles graphical processing, decreasing the processing burden
handled by the CPU.

Gzip: Automatic compression of creative assets for an ad when delivering from an ad server to a web page or
application.

High Resolution Displays: screen displays that uses more pixels to cover the same physical area, also
known as retina display.

© 2013 Interactive Advertising Bureau 26 HTML5 for Digital Advertising_v1.0_draft

Javascript Libraries: a library of pre-written Javascript which typically include functions for common tasks
like animations, DOM manipulation, and Ajax handling. (Often called Javascript frameworks)

Kilobyte (KB): A multiple of the unit ‘byte’ for digital information, used to quantify computer memory or
storage capacity equal to a 1,000 bytes (or technically, 2^10 = 1,024 bytes).

K-Weight: weight of a file measured in kilobytes.

Megabyte (MB): A multiple of the unit ‘byte’ for digital information, used to quantify computer memory or
storage capacity equal to 1,000 kilobytes (or technically, 2^20 = 1,048,576 bytes).

Mobile Rich Media Ad Interface Definitions (MRAID): standardized set of commands, designed to
work with HTML5 and Javascript, that developers creating rich media ads will use to communicate what those
ads do (expand, resize, get access to device functionalities such as the accelerometer, etc) with the apps they
are being served into. http://www.iab.net/mraid

Progressive Enhancement: when a creative developer uses features that are widely supported across
browsers, but also develops an enhanced version using the newest HTML5 features for browsers that are
compatible.

SafeFrame: SafeFrame 1.0 offers a solution that prevents external HTML content from accessing the website
and its sensitive data by framing and rendering the content from within a secondary domain. An API enables
communication between the webpage and the external content to allow for any rich interactions.
http://www.iab.net/safeframe

Software Developer’s Kit (SDK): is a pre-packaged piece of code that developers can incorporate into
their application to avoid having to develop it from scratch. For example SDKs from rich media vendors and
networks are often implemented into the publisher’s mobile app to handle advertising.

Sprite Sheets: Is a large image filled with smaller images. Putting all image assets for a creative into one
sprite sheet reduces the server calls needed to load the images. Another use of sprite sheets is to create
animation by displaying each of the smaller images in the correct order.

Scalable Vector Graphics (SVG): Defines graphics in XML format and can scale indefinitely to high-
resolution displays without increasing file size.

Transcoded: is the direct digital-to-digital data conversion of one encoding to another, such as for movie data
files or audio files. Files such as video assets may need to be transcoded into a few different formats to ensure
cross browser functionality.

Video Suite (VSuite): a set of technical specifications and protocols for in-stream video ad formats that
allow compliant ads to seamlessly play across multiple compliant publisher sites. This included IAB’s Video Ad-
Serving Template (VAST), Video Player-Ad Interface Definition (VPAID) and Video Multiple Ad Playlist (VMAP).
http://www.iab.net/vsuite

WebViews: A container with a rendering engine that displays web content within an app environment. This is
sometimes referred to as a “micro-browser”.

